A parallel linear solver for multilevel Toeplitz systems with possibly several right-hand sides
نویسندگان
چکیده
A Toeplitz matrix has constant diagonals; a multilevel Toeplitz matrix is defined recursively with respect to the levels by replacing the matrix elements with Toeplitz blocks. Multilevel Toeplitz linear systems appear in a wide range of applications in science and engineering. This paper discusses an MPI implementation for solving such a linear system by using the conjugate gradient algorithm. The implementation techniques can be generalized to other iterative Krylov methods besides conjugate gradient. These techniques include the use of an arbitrary dimensional process grid for handling the multilevel Toeplitz structure, a communication-hiding approach for performing matrix-vector multiplications, the incorporation of multilevel circulant preconditioning for accelerating convergence, an efficient orthogonalization manager for detecting linear dependence in block iterations, and an algorithmic rearrangement to eliminate all-reduce synchronizations. The combined use of these techniques leads to a scalable solver for large multilevel Toeplitz systems, possibly with several right-hand sides. We show experimental results on matrices of size up to the order of one billion with nearly perfect scaling by using up to 1,024 MPI processes. We also demonstrate an application of the solver in parameter estimation for analyzing large-scale climate data.
منابع مشابه
Parallelizing the Conjugate Gradient Algorithm for Multilevel Toeplitz Systems
Multilevel Toeplitz linear systems appear in a wide range of scientific and engineering applications. While several fast direct solvers exist for the basic 1-level Toeplitz matrices, in the multilevel case an iterative solver provides the most general and practical solution. Furthermore, iterative methods are asymptotically faster than many stable direct methods even for the 1-level case. This ...
متن کاملNew variants of the global Krylov type methods for linear systems with multiple right-hand sides arising in elliptic PDEs
In this paper, we present new variants of global bi-conjugate gradient (Gl-BiCG) and global bi-conjugate residual (Gl-BiCR) methods for solving nonsymmetric linear systems with multiple right-hand sides. These methods are based on global oblique projections of the initial residual onto a matrix Krylov subspace. It is shown that these new algorithms converge faster and more smoothly than the Gl-...
متن کاملA superfast solver for real symmetric Toeplitz systems using real trigonometric transformations
A new superfast O(n log n) complexity direct solver for real symmetric Toeplitz systems is presented. The algorithm is based on 1. the reduction to symmetric right-hand sides, 2. a polynomial interpretation in terms of Chebyshev polynomials, 3. an inversion formula involving real trigonometric transformations, and 4. an interpretation of the equations as a tangential interpolation problem. The ...
متن کاملA highly scalable dense linear system solver for multiple right-hand sides in data analytics
We describe PP-BCG, a parallel iterative solver for the solution of dense and symmetric positive-definite linear systems with multiple right-hand sides suitable for MPPs. Such linear systems appear in the context of stochastic estimation of the diagonal of the matrix inverse in Uncertainty Quantification and the trace of matrix products in statistical analysis. We propose a novel numerical sche...
متن کاملMemory and performance issues in parallel multifrontal factorizations and triangular solutions with sparse right-hand sides
We consider the solution of very large sparse systems of linear equations on parallel architectures. In this context, memory is often a bottleneck that prevents or limits the use of direct solvers, especially those based on the multifrontal method. This work focuses on memory and performance issues of the two memory and computationally intensive phases of direct methods, namely, the numerical f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Parallel Computing
دوره 40 شماره
صفحات -
تاریخ انتشار 2014